


Power

Power: is the time rate of energy transfer.

Average power: the time rate at which work is being done.

$$P_{avg} = \frac{W}{t} = \frac{E}{t}$$

The instantaneous power is defined as: the power at an instant.

$$P_{inst} = \frac{dW}{dt} = \frac{dE}{dt}$$

Mustafa Al-Zyout - Philadelphia University

29-Sep-2

3

Power

A scalar quantity could be: positive, negative or zero.

The instantaneous power when Force is constant:

$$P = \vec{F} \cdot \vec{v} = F \ v \ cos\theta$$

This expression for power is valid for any means of energy transfer.

Mustafa Al-Zyout - Philadelphia University

29-Sep-2

4

Units of Power

The SI unit of power is called the watt.

$$1 W = 1 J/s = 1 kg .m^2/s^3$$

A unit of power in the US Customary system is horsepower.

$$1 hp = 746 W$$

Units of power can also be used to express units of work or energy.

$$1 \, kWh = 1000W \times 3600s = 3.6 \times 10^6 J$$

Mustafa Al-Zvout - Philadelphia University

29-Sep-2

5

Average Power	Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan. R. A. Serway and J. W. Jewett, Jr., <i>Physics for Scientists and Engineers</i> , 9th Ed., CENGAGE Learning, 2014. J. Walker, D. Halliday and R. Resnick, <i>Fundamentals of Physics</i> , 10th ed., WILEY, 2014.
Saturday, 30 January, 2021 15:15	 H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016. H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 2013
	kg and moves 210 m up the shaft in 23 s at constant speed. At what
average rate does the force from the cable do work or	n the cab:
$P = \frac{W}{t} = \frac{E}{t} = \frac{mgh}{t}$	
2 × 10 ³ × 00 × 210	
$p = \frac{3 \times 10^3 \times 98 \times 210}{23} = 2 \cdot 7 \times 10^5 w$	

Instantaneous power Saturday, 30 January, 2021 15:15	Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan. R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 2014. J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY,2014. H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016. H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 2013.
The figure shows constant forces \bar{F}	\vec{F}_1 and \vec{F}_2 acting on a box as the box slides rightward across a frictionless floor.
Force \vec{F}_1 is horizontal, with magnit	itude 2 N; force \vec{F}_2 is angled upward by 60° to the floor and has magnitude 4 N.
The speed of the box at a certain i	instant is 3 m/s.
• What is the power due to each	ch force acting on the box at that instant, and
• What is the net power?	
	Negative power. (This force is removing energy.) Positive power. (This force is supplying energy.)
	Frictionless $\overrightarrow{F_1}$ \overrightarrow{V}
Solution	
	, not an average power, over a time period. Also, we know the box's velocity
(rather than the work done on it).	
For force \vec{F}_2 , at angle $\theta_2 = 60^\circ$ to very $P_2 = F_2 v \cos \theta_2 = (4.0 N)(3.0 m/s)$. This positive result tells us that for	
The net power is the sum of the in	
$P_{net} = P_1 + P_2 = -6.0W + 6.0W =$	= 0
	transfer of energy to or from the box is zero. Thus, the kinetic energy $(K = \frac{1}{2}mv^2)$ ne speed of the box will remain at 3.0 m/s.

Instantaneous power - unit vectors Saturday, 30 January, 2021 15:15	Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan. R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 2014. J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY,2014. H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016. H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 2013
	by a force $\vec{F} = (4\hat{\imath} - 2\hat{\jmath} + 9\hat{k}) N$ while the object's velocity is
$\vec{v} = \left(-2\hat{\imath} + 4\hat{k}\right) m/s$. What is the instantaneous rate	at which the force does work on the object?
$\mathbf{p} = \vec{r} = (4\hat{r} + 2\hat{r} + 0\hat{r}) + (2\hat{r} + 4\hat{r})$	
$P = \vec{F} \cdot \vec{v} = (4\hat{\imath} - 2\hat{\jmath} + 9\hat{k}) \cdot (-2\hat{\imath} + 4\hat{k})$	
$P = (4 \times -2) + (-2 \times 0) + (9 \times 4) = 28 w$	

07-06-Power Page 3